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Abstract—The endochronic theory of plasticity advanced by Valanis in 1971 and 19751, 2] is discussed
critically. It is shown that the theory leads to a number of predictions which are not in accord with the observed
behavior of metals. A further theory[5), while not open to these objections, does share with the earlier theory
the advantages over conventional plasticity theory which were claimed for it.

1. INTRODUCTION

In two papers(1,2] published in 1971, Valanis claimed to derive from thermodynamic consider-
ations three-dimensional constitutive equations on the basis of which the behavior of plastic,
or visco-plastic materials, subjected to small or large deformations could be modeled. His
theory was most fully developed in the case when the material is rate-independent and the
deformations are sufficiently small so that the classical infinitesimal strain tensor can be used.
Accordingly, in the present paper the theory will be discussed in this context.

In[1,2], Valanis claimed for this theory the merit, over most other phenomenological
theories which purport to describe the elastic-plastic behavior of metals, that it avoids the
introduction of a yield surface. The stress is expressed as a functional, of specific form, of the
history of the strain—a single such expression being valid both under conditions of loading and
unloading. It also expresses the stress explicitly as a functional of the total strain and avoids the
separation of strain into elastic and plastic parts.

Since the thermodynamic content of Valanis's argument is questionable and is, in any case,

replete with ad hoc assumptions, discussion of it is relegated to the Appendix. There the
argument is presented in a manner which retains its essential features, but is stripped of
.irrelevancies. However, even when presented in this manner, it is evident that certain assump-
tions are unacceptable and others are of a quite arbitrary character unsupported by physical
justification. Accordingly, in the main body of the paper we discuss the constitutive equation
without relation to this background, purely from the point of view of its suitability as a mode!
for such materials as metals.

The essential feature of the constitutive equation of Valanis is that it assumes the stress
following some deformation history to be a linear isotropic functional of the strain increment
history, the kernel in this functional being a scalar function of an intrinsic time defined by an
isotropic scalar functional of the strain increment history. Valanis uses the term endochronic
theory to describe a theory of this type. Valanis assumes a quite explicit form for the functional
defining the intrinsic time. He justifies it by an alleged reasonableness, which is subjective, and
by alleged agreement between the predictions of the theory and experiment. It is seen in
Sections 2 and 6 that even if we take this agreement at its face value, it could not establish the
validity of his assumed expression for the intrinsic time, since a wide variety of other
expressions would provide equally good agreement.

In this paper we discuss the theory in a slightly broader context, in which the particular
form for the intrinsic time used by Valanis is replaced by a somewhat more general one (see
eqn 5.4 below). It will be seen that most of the criticisms which can be levelled against the
theory of Valanis also apply to theories based on this more general definition of intrinsic time.

For rate-independent materials, the strain-history can necessarily be parametrized in terms
of the path-length covered by the strain history in 9-dimensional strain space. The intrinsic
time, whether defined in the manner adopted by Valanis, or in the more general manner of the
present paper, can then be parametrized in terms of this strain path length. As a matter of
convenience we adopt this course in the present paper, although this is not essential to the
arguments presented.
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In the case of one-dimensional deformations, discussed in Sections 2-4, this strain path
length is taken as the intrinsic time. For simple shearing deformations this involves no loss of
generality since the intrinsic time is necessarily some constant multiple of the strain path length.
This is also the case for simple extension, provided that we make the assumption, which is
made by Valanis, that Poisson’s ratiot (defined as the ratio decremental transverse strain/in-
cremental longitudinal strain) is constant.

In Section 2 we establish certain relations which could, at any rate in principle, be used to
test the applicability of the class of constitutive equations considered to a particular material
for one-dimensional deformations.

In Section 3 we discuss the relation between the incremental moduli for loading and
unloading from a state in the plastic regime. It has been pointed out that the constitutive
equation adopted by Valanis yields, in disagreement with experimental results for metals, a
value for the unloading modulus which is very different from the initial modulus for infinitesi-
mal strains from the undeformed state. We find that this is not necessarily the case in the
context of the more general theory discussed in the present paper. In Section 4, we discuss the
dissipation in infinitesimal unloading-loading and loading-unloading strain cycles starting at an
arbitrary strain which has been reached by a monotonic loading. We find, as did Sandler (4] in a
more restricted context, that the dissipation must necessarily be negative in either one or the
other of these cycles and accordingly, the material will be unstable.

The three-dimensional theory is introduced in Section §. It is shown in Section 6 that for
deformations consisting of successive simple extensions and simple shears, carried out in
discrete time intervals, any definition of intrinsic time in the broader class envisaged in the
present paper can lead to the same prediction for the stress as that used by Valanis, if
appropriate values are given to the adjustable constants. Accordingly, agreement between
theory and experiment for deformations of this type cannot be used to establish the predictive
value of Valanis's constitutuve equation for more general deformations. Attention is drawn in
Section 8 to a further general criticism of constitutive equations based on the endochronic
concept. It is shown that if a strain is reached by two paths which differ only very slightly, the
associated stresses may be very different, i.e. the relation between stress and strain history is
not continuous in the sense of the supremum norm.

In [5] Valanis presented a revised theory in order to meet the criticisms which had been
levelled at the earlier theory. This is discussed briefly in Section 9. He again motivates the
theory by thermodynamic arguments which are analogous to, and open to the same criticisms as,
those used to motivate the earlier theory. Accordingly, we do not discuss them explicitly in the
present paper. While this second theory is, in fact, not open to most of the criticisms to which
the earlier theory is subject, it does not possess the two major and somewhat revolutionary
advantages which were claimed for the latter—that it describes the elastic-plastic behavior of
metals without the introduction of a yield surface and without the separation of the strain into
elastic and plastic parts. It differs from previous theories of plasticity only in the manner in
which strain-hardening affects the yield surface and the relation between stress and incremental
plastic strain. No evidence is adduced to demonstrate that it provides a more accurate
description of the actual behavior of metals than do other constitutive equations that have been
suggested.

The criticisms in this paper of the theory advanced in {1, 2] do not, of course, necessarily apply
to all possible theories based on the endochronic concept, particularly if the endochronic time is
defined in terms of the plastic, rather than the total, strain.

2. ONE-DIMENSIONAL THEORY

We consider small uniaxial deformations of a rate-independent material. Let £ denote the
strain. Let ! be the length of the strain-path, thus:

dl =|de|, @1
with / =0 in the undeformed state. We now consider a deformation in which ¢ = 0 initially and

+This assumption, which was criticized by Lee [3] is discussed in Section 7.
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increases monotonically to £,, then decreases monotonically to &,, increases monotonically to
€3, and so on, the final reversal taking place at & = ¢,. We denote the final value of ¢ at which
the stress is measured by E. We note that if u is odd (even) the last reversal will be followed by
a decrease (increase) in .

Let /, be the value of / corresponding to the ath reversal of the strain, and let L be the
value of / corresponding to the final value E. It is easily seen from (2.1) that

a-t
L=22 (-1 eg+ (- 1) e, (2.2)
B=1
and

L= 2;'(- )8! g5+ (~1)* E, 2.3)
We now regard ¢ as a function of / and make the assumption that the stress o is given by

L
o= [ fiL, naea, (2.4)
o N

where f is a positive function of the indicated arguments. Noting that for [,_; <! <1,

de(l) =di(a 0dd) and de(l)=-d! (a even), (2.5)
we obtain from (2.4)
=2 2( -1 g(L, L)+ (- 1)* g(L, L), (2.6)
where
!
(L, D)= J' f(L, Ddl. @7
[}

We can rewrite (2.6) as

2( -1)*'o(L, 1)+ a(L, L) (u even)

o= (2.8)
$ (= 1) o(L,1,) (u 0dd),
a=}
where
a(L,1,)=2¢g(L,1,)—g(L, L),
o(L,L)=g(L, L). 2.9)

We note that o(L, {,) is the stress, when the length of the strain path is L, in a deformation in
which the strain increases monotonically from zero to [, and then decreases monotonically until
the total length of the strain path is L. Also, o(L, L) is the stress, at strain path length L, in a
deformation in which the strain increases monotonically from 0 to L.

From (2.8) it is easily seen that

U(L’ lh caey ln) - U(Lv lh ceny lu—l) = ( - I)“[U(L! L) - O’(L, lu)]v (2'10)

where o(L, l,,...,1,) denotes the stress, at strain path length L, resulting from a deformation
with u reversals of strain at path lengths /,,1,..., [,
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From (2.10) or (2.8), we easily obtain the relations
O'(L, 11, ceey la) - O’(L, Ilv sy Ia-Z) = ( - l)a[a.(L, In-l) - U(Lv Iu)]' (2] l)

Conversely, by giving a the values 3,5,. .., u (odd) in (2.11) and adding the resulting equations,
we can recover (2.8), and, by giving a the values 2,4,..., u (even) and adding the resulting
equations, we can recover (2.8),. In deriving the second of these results, we note that when
a=0,0(L,)=0c(L, L)

As an example of the implications of eqns (2.10) and (2.11), we consider a deformation in
which the strain increases from zero to ¢, and then undergoes n cycles of deformation between
strains €, and &,(e> < &,). In this case

L=g+(@-1)e, —&). L=g;+2n(e ~ e, (2.12)
Taking & =2n+ 1 in (2.11), we obtain
O'(L, II’ ey lZn+I) - G'(L, l], ceey [Zn-l) = O'(L, 12n+l) - U(Lv lln)- (213)

We note that the ¢'s in (2.13) have the following interpretations: o(L,/,, ..., l,.,) is the stress
at strain ¢, resulting from an initial deformation to strain £, followed by n cycles between
strains ¢, and eo(e2< g)); (L, I, ..., b,-)) is the stress at strain £, +2(¢g, — &,) resulting from an
initial deformation to strain ¢, followed by n —1 cycles between strains ¢, and ¢, and then a
further increase in strain to e, +2(¢; - £); o(L, lps1) = 0(L, L) is the stress at strain £, +
2n(e, - ¢,) resulting from a monotonic deformation to this strain; o(L, l,,) is the stress at strain
£1+2(n - 1)(e,~ &5) resulting from a monotonic deformation to strain &, +(2n —1)(¢, - €2)
followed by a decrease in the strain to &, +2(n — 1)(¢, — ¢,).

Suppose now that we do not assume that the stress is given by an expression of the form
(2.4). As before, we consider that initially the strain increases and this increase is followed by u
reversals of the strain at strains ¢, €,..., ¢,. Then, at / = L, the stress must be a function of L
and of ¢, &,..., &, and, hence from (2.5),0f L, I}, I,,..., 1. We write

g=o(L,....1). 2.14)
We note that if u = 1, the relation (2.10) is satisfied identically. (We bear in mind that if u =1,

o(L,l,...,l,.)=a(L,L).) It is easily seen that if the function o(L,/,) = G(L, 1)), say, is
specified, and we take

1a,.
f(L, 1) -2—3—,[0(L, 1)) (2.15)
in (2.4), we obtain
o(L, 1) = 5{28(L, 1) - 6L, 0)- (L, L) (2.16)

(L, 0) gives the specified dependence of stress on path length for monotonic decrease of strain
from"zero to — E. Provided that

a(L,0)=-d(L, L), .17
we obtain from (2.16)
o(L,l}))=da(L,1). (2.18)

The condition (2.17) is the condition that the prescribed stress merely changes sign if the
prescribed strain history is replaced by its negative. That such a condition is necessary if the
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prescribed stress is to be expressible in the form (2.4) is &vident: We thus conclude that if the
stress at [ = L, following a single reversal, changes sign when the strain history is replaced by its
negative, then this stress can be expressed in the form (2.4).

We shall now show that if, further, the specified stress at [ = L following u reversals of
strain is an odd functiion of the strain history and satisfies the relations (2.10) for u =
1,2,..., u, then the specified stress can be expressed in the form (2.4) with f(L,[) given by
2.15).

We prove this result by induction. Suppose that o(L,/,,...,[,-;) with & odd is given by
(2.4), i.e. by (2.6) with & = a - 1, thus

o =2g(L,1,)-g(L,L)+...-g(L,l,-)]+g(L, L). 219

We assume that (2.10) with g = « is valid. Then, we obtain, from (2.19), (2.9) and (2.10) with
r=a,

J(L» Ih teey la) = 2{8(14: ll) ‘Z(L, 12) +. *s +8(L, 1«)1 _g(La L)~ (2'20)

It follows that o(L,!;,...,L,) is given by (2.4) with f(L,!) given by (2.15). An analogous
argument is applicable to the case when « is even. Since we have already seen that the
proposed theorem is valid when o« = 1, it is valid for all a.

It is suggested that an experimental test of the validity or non-validity of the constitutive
eqn (2.4) might well be based on the relations (2.10).

3. THE INCREMENTAL MODULUS--UNIAXIAL DEFORMATION

In this section, we again consider a uniaxial deformation in which the stress is given in terms
of the strain history, regarded as a function of strain path length /, by

L
(L) = L f(L, Ide(l), 3.0

.where L is the value of [ at which the stress is measured.

We consider a strain history which consists either of a monotonically increasing strain, or of
a sequence of increasing and decreasing strains. We assume, however, that the strain E
corresponding to path length L is positive and is reached finally through increasing strain. We
calculate the incremental moduli at [ = L when the strain is increased by an infinitesimal amount
AE. Let Ao be the corresponding increase in stress. If AL is the increase in [ corresponding to
the strain increase AE, we have

AL=|AE|. (3.2

We denote by u. and u. the incremental moduli corresponding to AE positive and negative
respectively. Then, from (3.1),

Ao Ao _ L g
pe =222~ .0+ [ fiL
Ao -
po=RZ=-2% =1, 1)- j 2 f(L. bt (33)
We note that when L =0,
pa = = f(0,0) = py, say. (34

to is the incremental modulus at zero deformation. From (3.3)

#a ¥ po=2f(L, L). (3.9
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Valanis [1, 2] made the particular choice of f(L,/):

n-l
fLn=EtE(15) )

where E,, E;, B and n are positive constants. In this case,
m=f(L,L)=Ey+E,, 3.7

and (3.5) becomes

Bet po = 2p. (3.8)

For metals it is found experimentally that u_ is approximately u, and since, in the plastic
regime, u. is very much less than u,, the relation (3.8) is not valid. This was adduced as an
argument against the endochronic theory advanced by Valanis in [1,2] and led the latter to
modify his theory. It is evident that the same criticism would apply to any theory in which
f(L, ) has the form

- ¢’1(l) ¢2(l) X0}
f(Lh ¢ (L)+C2 ¢z(L) +C, = (L) (3.9)

where C,, ..., C, are constants, so that f(L, L) = f(0, 0). However, it may not apply for other
forms of f(L,I). Also, this criticism does not, of course, preclude the applicability of one-
dimensional constitutive equations of the type considered to other materials than metals.

4, DISSIPATION IN CYCLIC DEFORMATION

(a) Unloading-loading

We now consider the material to undergo a monotonically increasing uniaxial strain to strain
g). Thereafter, the strain is decreased to ¢, and then increased to ¢,. We shall calculate the
dissipation @, per unit volume, in this cycle of deformation.

Let I}, l; and L denote the strain path lengths at the first and second strain reversals and at
the final strain ¢, respectively. Then,

1|=€,, 12=2€|"£2, L=3E|_’252. (4])

Let I be the value of the strain path length at a generic point on the cycle at which the strain is
. Then,

d! = de(strain-increasing) and d/ = — de(strain-decreasing). 4.2)

From (2.4) and (4.2) the stress at a generic point of the cycle, corresponding to path length /, is
given by

a(l, 1)) =2g(l, 1))~ gll, 1) strain-decreasing
a(l, i, 1) = 2g(l, 1,) - 2g(1, ) + g(l, I),strain-increasing, 4.3)

where g(/, £) is defined by (see eqn. 2.7)

¢
8.o)= [ 10,0006 (44)
The dissipation @, per unit volume, in the cycle is given by

i L
P=- f ol 1)dl + J" oL 1, Lydl, 4.5)
I y
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We now make the assumption that the amplitude of the deformation is sufficiently small so
that terms of second degree in (/ — [;) may be neglected in comparison with those of first degree.
Then, we may write, from (4.4),

gl ly=gl. 1)+ -1)g.
g(l. l:) = g(l.. l|)+(l - 1|)g1 +(’2" ’I)glv (46)
gi.h=g, 1)+~ 1)g +U-1)g,

where g, and g. are defined as the values of ag(/, £)/al and ag(l, £)/ 3¢ respectively when [ =1,
and ¢ = |,. Introducing (4.6) into (4.3), we obtain

all.ly=gl,h)+U-1)g = (~1)g,
o, L, L)y=g(l,[))+U-1)g+ I +1,-2)g. (L))

We now introduce (4.7) into (4.5) and carry out the integrations to obtain, with (4.1),
D=gie, - Ez)z- 4.8)

For the particular expression for f(I, £) used by Valanis (see eqn 3.6), viz.

n-1
fu.o=E+ E(T35) “9)

where E,, E,, B and n are positive constants, we have from (4.4) and the definition of g,:

__El(ﬂ"l) _ 1
o= =20 - ) @10

(b) Loading-unloading

" We now consider the material to undergo a monotonically increasing uniaxial strain to ¢,. It
then undergoes a cycle of strain in which the strain is increased to £, > ¢, and then decreased to
£, again. The strain path lengths /,, [, and L are now given by

l|=£|,12=£2.L=251"8|. (4.]‘)

If, as before, { is the value of the strain path length at a generic point on the cycle at which
the strain is £, we have, as before, the relations (4.2). The stress is given by

a(l,l)=g(l,1) strain-increasing

a(l, )=2g(l,1y)—g(l, 1) strain-decreasing. 4.12)

The dissipation @ in the cycle is now given by

I L
o= ol - f ol Lydl. @.13)

N I
Again, with the small amplitude assumption, we obtain

gl,h=gl, lp+U-1L)g +U-1)ga
gl =g, 1)+ -1)g +({L-1)g.. 4.19)
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From (4.12), (4.13) and (4.14) we obtain, with (4.11),

Z=-glea—e) 4.15)
If f(l, &) is given by (4.9), we find, as before, that g, is given by (4.10).

(c) Discussion
We note from (4.4) that

I
o= aggll, é) ‘ et = fo L’f_g_li) de (4.16)

Then, g, =0 if /, =0 and, from (4.8) and (4.15), we have 9 = 0, whether the infinitesimal cycle
of deformation is the loading-unloading or the unloading-loading cycle. If f is a monotonically
decreasing function of /, then g, is negative and, for /, #0, 2 <0 for the unloading-loading
cycle and 9 >0 for the loading-unloading cycle. This is the situation which prevails in the case
when f takes the particular form (4.9) proposed by Valanis. These results imply that the
materials considered have no finite elastic range as was pointed out by Lee [3]. Also, the fact
that 9 <0 for the unloading-loading cycle implies, as was pointed out by Sandler [4], that the
material modeled is unstable.

5. THREE-DIMENSIONAL THEORY

We consider the material to undergo sufficiently small deformations so that the deformation
in an element can be described by the history of the infinitesimal strain matrix £(¢t) = || (1)
referred to a rectangular cartesian coordinate system X. Let o = o; || denote the stress matrix
at time T, referred to the system x.

The length of the strain path at time ¢ in 9-dimensional strain space is given byt

di(e) = {tr[de()1?}'?, 1(0)=0, 5.1
ie.
)= [ tiridecory (5.2
We introduce the notation
L=1(). (5.3)

It has been shown by Pipkin and Rivlin [6] that, for an isotropic rate-independent material,
the stress corresponding to strain path length L is an isotropic tensor functional of the strain
history regarded as a function of /. We shall examine the properties of a particular class of such
relations which includes that used by Valanis [1,2] as a special case.

We define an isotropic scalar functional ¢ of £() by

d{ =d{(h) = ¢lde(!)], ((0)=0, (5.4)

where ¢ is a positive definite isotropic scalar function of de(/), homogeneous of degree unity in
the latter. From (5.4)

I
[=¢= [o Slde(t)]. 5.5)

tThe strain path lengths / and L introduced in this section do not reduce in the uniaxial case to those introduced in
Section 2. They can, however, be simply related to them.
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We call { the intrinsic time. We note that since ¢ is positive definite, { increases monotonically
with 1. Since ¢ is an isotropic function of de(!), it must be expressible as a function of the
elements of an isotropic integrity basis for de(!). This may be chosen as I;, I, I, defined by

I, =trlde(D], L=trlde, I,=det[de(/). (5.6)
We adopt the notation
Z={(L). 5.7

We now assume that the stress o corresponding to strain path length L is given by an
expression of the form

L L
o=2 j w(Z,0de(l)+ & f MZ, D)trlde(D), (5.8)
1] 0

where & denotes the unit matrix.
Valanis adopts the particular form for ¢:

dlde(D) = (kI3 + ko 1), 5.9

where k, and &, are positive constants, which may vary from material to material. He gives no
reason for making this particular choice beyond the statement “it appears logical to define {
by...".

6. SIMULTANEQUS SIMPLE EXTENSION AND SIMPLE SHEAR
We now suppose that the material is subjected to a simple extension in the x,-direction of a
rectangular cartesian coordinate system x and a simple shear for which the direction of shear
is the x,-direction and the plane of shear is the x,x,-plane. We adopt the notation

e=g(ly=ey(l), k=x(l)=gpl) (6.1)

and

E=¢(L),K =«(L), 6.2)

where / = L at the instant at which the stress is measured.

In order to be specific we shall suppose that the initial extension is positive and that
successive reversals of the extension occur at € = g,6,,. .., £,. We also assume that the initial
shear is positive and successive reversals occur at K = k,k3,..., k,. It is assumed that the
shearing and extensional deformations may occur in any order, but take place in disjoint time

intervals: Let
=, whene=¢g,(a=1,...,1),
I=I;whenk=xg(B=1,...,0) (6.3)
For a simple extension in the x;-direction, only oy; is non-zero and, from (5.8), for the
simple shearing deformation in the 12-plane, only o;( = ¢3,) is non-zero.
We assume, with Valanis, that Poisson's ratio for the material is a constant @, say,

independent of the deformation to which the material is subjected. (We shall discuss this
restriction later in Section 7.) Then,

tre =(1-2a)e. (6.4)

S§S Vol. 17, No. 2-G
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We have, from (5.2), (6.3) and the assumption that Poisson’s ratio is constant
I=(1 +2a')2)”2{ﬁ: 2A-D* g, + (=" E}
a=}

+2"2{i A-D kg, +(- D" x}, (6.5)

a=1

where B is the number of reversals of extensional strain and v is the number of reversals of
shear strain prior to the strain-path length / being attained.

Since ¢ is homogeneous of degree unity in de(/) and is positive definite, for the particular
class of deformations considered in this section

de(l)] for simple extension

d(l)| for simple shear, (6.6)

k|
=k

where k; and . are positive constants, which depend on the particular choice of ¢. We note
from (6.5) that

[de(D)] = (1+203)"dI
[de(h)]=2""2dl. 6.7

From (6.4) and (5.6), we have

I=(1-2&)e, L=(1+2&%de)’, I,=aXde) for simple extension

I=1,=0, L=2d«x) for simple shear. ©8)
In the particular case (5.9) considered by Valanis, we obtain, with (6.7) and (6.8),
& ={ki(1-2a)2+ k(1 + 26%)}*(1 +26%) 72 dl  for simple extension 69)
¢ =k¥*dl for simple shear. ‘
Introducing (6.7) into (6.6) and comparing the resulting expressions with (6.9), we obtain
ky = {(ky(1=2@) + ko1 + 269)}'?,
ky = 2ky)'™. (6.10)
As another illustration, suppose
¢ = [alt+ b3+ cLI, + el 3], (6.11)

where a,b,c,e are positive constants and I, I,, I are defined by (5.6). Then, from (6.11), (6.7)
and (6.8)

¢ =[a(l -2&)* + b(1 - 2@)X(1 + 207 + ca¥(1 - 2@)
+e(1+269)1"(1 +26%)7 "2 dl  for simple extension

d=e'"dl for simple shear. (6.12)
Comparing (6.12) with the expressions for ¢ obtained from (6.6) and (6.7), we have

k =[a(1-26) + b(1 -25)X(1 +26%) + ca¥(1 - 2@) + e(1 + 2%,
k, = (de)'". (6.13)
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We have seen that any ¢, which is a function of I, I, I; and is homogeneous of degree 1 in
de/dl, leads to the expression (6.6) for simple extensions and simple shears of the types
considered. It follows that we connot distinguish between different forms of ¢ by experiments
in which the deformation is a sequence of such simple extensions and simple shears. In
particular, the experiments of Mair and Pugh, which involve the superposition of simple
extensions on simple torsions of thin tubes, cannot be used, as Valanis has done, to establish
the validity of the particular form (5.9) for ¢. Agreement of his theory with such experiments
could, at best, lead only to the conclusion that the theory is not inconsistent with the
experiments.

7. POISSON'S RATIO
It is assumed by Valanis in [1,2] that Poisson’s ratio for the materials he considers is
constant. An assumption as radical as this should be tested independently for any material to
which the theory is applied. This could be done, at any rate in principle, by measuring the

change in volume, or the lateral contraction, of a rod of the material when subjected to simple
extension.

Alternatively, it might be done by making simultaneous measurements of tensile and
shearing force when a thin cylinder of the material is simultaneously subjected to simple
extensional and shear strains which are increased proportionately. For simultanious mono-

tonically increasing simple extensions and simple shears, we find from (5.8) that, whether or not
Poisson’s ratio & is constant

L
on= [0 [26(Z, )+ (1= 28)A(Z, e (),
L
o= oy = fo [~26u(Z, ) +(1 ~26)A(Z, OMe(l) =0, 1)
L
a;= Io u(Z, D)de(l), oy =03 =0,

where €(I) and x(!) denote the extensional and shear strains respectively. In (7.1), [ is given,
from (5.1), by

dl =[(14+2a°(de)* + 2(dx)*)"?, (1.2)

with [ =0 when the material is undeformed. Also, from (5.6), we have

I =(1-2a)de(l), I, = (1 +2a%)[de ()} + 2[dx ()T,
Iy = olde(h){alde ()P + [de(DF}. (13)

d¢ is a positive function of I,, I, I;, homogeneous of degree unity in de(/) anddx(/), and { =0
when [ = 0.
It follows from (7.1) that, if @ is constant,

L
on=21+a) L wl(Z, Dde(l),
L
o= 2[ p(Z, Hde(D). (1.4)
0

Now, if the extensional and shear strains are increased proportionately, so that

k(D)= xe(l), (7.5)
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where y is constant, we have, from (7.2) and (7.5),

de()=(1+2a*+2y»)"2 dI,
de(l) = x(1+2a%+ 2% " dl. (7.6)

Also, from (7.4) and (7.6), we have
L
on=21+a)1+262+2x)™'" f w(Z, 0l
0
L
au=XHQéHJ{meI w(Z, Odl. (17
0

Thus,
onlop=(1+a)lx. (7.8)

The assumption that Poisson’s ratio is constant has been criticized by Lee [3] insofar as the
applicability of the theory to metals is concerned. For most metals, Poisson’s ratio in the elastic
range is about 1/4. This implies that the ratio bulk modulus/Yovrng's modulus =2/3. It is
well-known that when the plastic strain in a metal is large compared with the elastic strain, the
bulk modulus is far greater than the Young’s modulus.t

It is, however, possible that for other materials, particularly those which may, with good
approximation, be regarded as incompressible, the assumption of constant Poisson’s ratio will
be valid.

8. A CONTINUITY CONSIDERATION

We now consider a deformation which consists of alternate infinitesimal simple extensional
strains of amount A¢ and infinitesimal simple shearing strains of amount Ax. As in Section 6,
we consider the extension to be parallel to the x;-axis of a rectangular cartesian coordinate
system x and the shear to be in the x,-direction and the x,x,-plane. We consider the tensile
and shearing stresses after » such simple extensions and simple shears. We denote the resultant
extensional strain by E(= vA¢) and the resultant shear strain by K(= vAx). The value of ¢
when the extensional strain is ¢ and the shearing strain is « is given by (6.6)

{=kie + k. @.1)
Since
xle = K/E, 8.2)
eqn (8.1) can be rewritten at
t=(E+EE)e = (Bh+k)e ®3)

We shall assume that { has the form proposed by Valanis and given by (5.5) and (5.9). Then, &,
and k, are given by (6.10).

With the assumption that Poisson’s ratio is constant, the tensile and shear stresses are
obtained from (7.4) as

E
a..=2(1+a'»)L w(Z, O)de,

K
o= 2]; u(Z, D)dx, (8.4)

tHere we are using the term “Young's modulus™ in the sense of (tensile force per unit area/extensional strain)
notwithstanding that the material is plastically deformed.
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where [ is given by (8.3) and
Z=kE+kK. 8.5

We now suppose that instead of increasing the strains to their final values in a stepwise
fashion we increase them proportionately. Then, using the expression for { given by (5.5), (1.3)
and (5.9) we have, with (8.2) and (6.10),

(= (6+K0)" = (B E+m)" « ®6)

Z is obtained by taking £ = E or « = K in (8.6).

The tensile and shear stresses are then given by (8.4) with these expressions for { and Z. It
is evident that they are, in general, different from those which correspond to the stepwise
deformation previously considered. Similar disparities will evidently be found, except perhaps
in some exceptional cases, if other forms for { are adopted.

In mathematical terms, the type of behavior predicted by the model we have considered
arises from the fact that the intrinsic time is not a continuous functional, in the sense of the
supremum norm, of the strain history.

We note that if a material does, in fact, exhibit the type of behavior predicted in this section,
it will be extremely difficult, and perhaps impossible, to subject it to meaningful tests of the
type considered.

9. VALANIS'S SECOND THEORY—PHENOMENOLOGICAL APPROACH

In presenting his first theory, Valanis claimed, as a major advance, that the endochronic
assumption enables us to construct a continuum-mechanical theory, for rate-independent
elastic~plastic materials, in which the material properties are described by a single constitutive
equation without the need to introduce the concept of a yield surface. These constitutive
equations also have the attractive feature that, in them, the stress is related to total strain.

Both of these features are lost in the theory, advanced by Valanis in order to meet some of
the criticisms of his first theory. This second theory is motivated by “thermodynamic™
arguments of a type similar to and open to the same criticisms as, those advanced in developing
the first theory.

In the present section we will discuss the theory in more conventional phenomenological
terms. In [5] Valanis presents his ideas at various levels of generality, but here we wiil limit our
discussion to that form of the theory whose implications are discussed in (5] at greatest length.

The strain ¢ is regarded as the sum of an elastic strain ez and a plastic strain &p, thus:

€E=¢€g+Ep o.n
The stress o is related to the elastic strain by a constitutive relation of the form
o = 2uo€g + A(treg)8, 9.2)

where uo and A are constants. It is assumed that dilatational deformations are purely elastic, so
that

trep =0, tre=treg 9.3)
From (9.2) and (9.3),, we have

tro = (2ue+3A)lre. 9.4)

From (9.2), the deviatoric stress s is given by

s=o- %(tr o)=2ueg, (9.5)
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where e; denotes the deviatoric elastic strain. From (9.1), (9.3) and (9.5), the deviatoric plastic
strain ep is given by

ep = Ep=e—eg=e—s2uq (9.6)

where e denotes the deviatoric total strain.
An intrinsic time { is defined in terms of the plastic strain by

d¢ ={tr(dep)’}"?, 9.7

with ¢ =0 in the undeformed state. We note that { is the arc length measured along the strain
path in the 9-dimensional space defined by the components of the plastic strain in a rectangular
cartesian coordinate system. [We note the analogy between ¢{, so defined, and / defined by (5.1).]

For a rate-independent material the plastic strain £, may be regarded as a function of ¢, It is
assumed in [5] that the deviatoric stress, when { = Z, is related to the plastic strain by a
constitutive equation of the form

s=s(2) = s@dd—‘}"l D, 9.8)
where
V4
r=2u0 L 12, Dder(©), 9.9)

s is a positive constant, and ¢(Z) is a positive monotonically increasing function of Z. From
(9.8) and (9.7) it follows that

tr(s = r)* = [sPW2) (9.10)

Equation (9.10) may be regarded as a hypersphere in the 9-dimensional space formed by the
components of s in a rectangular cartesian coordinate system. The center of this hypersphere is
at r (regarded as a vector in the 9-dimensional space) and its radius is s ¥(2). Since trs =0, s
must be on the intersection of the hyperplane ¢r s = 0 with this hypersphere. This intersection is
itself a hypersphere in the 8-dimensional sub-space of the 9-dimenional space for which trs=0.
This hypersphere is called the yield surface. Since trep =0, it follows that the point r lies in this
subspace. It is, of course, the center of the hypersphere in the 8-dimensional space and the
radius of this hypersphere is sPy(2).

We note from (9.7) that if dep =0, then dZ =0 and, conversely, if dZ =0, then de, =0.
Thus, if at any instant the deformation is purely elastic, dep/d¢];., is indeterminate and
eqn (9.8) becomes meaningless. However, from (9.2), the stress increment do is then
related to the strain increment de( = deg) by

do = 2#0 de + /\o(tr df)s (91 ])

and, from (9.5), the deviatoric stress increment ds is related to the deviatoric strain increment
de(=deg) by

ds = 2ugde. 5.12)

If depld¢ | ;- is not indeterminate, it follows from (9.8) that the plastic strain path, at arc
length Z, is in the direction of the outward normal to the yield surface corresponding to arc
length Z.

We see that the theory which has been presented is of a type generally similar to many other
plasticity theories which have been formulated. In effect, it is assumed that:

(i) The total strain may be regarded as the sum of an elastic strain and a plastic strain; the
plastic strain is isochoric.
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(i) It is assumed that the moduli associated with changes of elastic strain are constants,
independent of strain history.

(iii) There exists a spherical yield surface in deviatoric stress space, whose outward normal is
parallel to the incremental plastic strain vector.

(iv) The radius of the yield surface and the position of its center depend on the history of the
plastic strain (i.e. the material modeled exhibits both kinematic and isotropic hardening). A
particular form is chosen for this dependence, which, while having a measure of generality, is
far from being of the most general form that can be envisaged.

(v) If the deviatoric stress lies at a point on the yield surface corresponding to some specified
plastic strain history and is then changed to a point lying inside, or on, this yield surface, the
corresponding deformation is purely elastic.

It is evident that the assumptions (i), (i) and (iv) meet the objections to the first theory of
Valanis discussed in Sections 4, 5 and 7. Paralleling the discussion in Section 6, we shall now
discuss the extent to which experiments involving superposed simple extensions and shears
carried out in discrete time intervals can be used to establish the validity of the constitutive eqn
(9.8), with (9.9).

We again consider a somewhat wider class of constitutive equations which have the form
given in (9.8) and (9.9), but in which { is defined in a different manner. Let I, denote the length
of the plastic strain path at time ¢, thus (see eqn 9.7)

b = lp(t) = L {trides (O™, 0.13)
and let

Lp = p(T). .14

Then, [, can be used to parametrize ep.

We now define d{ as an arbitrary positive isotropic scalar function of dep, which is
homogeneous of degree unity in the latter. Accordingly, d{ is a positive function of the
isotropic invariants of dep, denoted I;, L, I; and defined (see eqn 5.6)

Iy =trldep(p)) = 0, I, = tr{dep(lp)), I; = detlden (Ip)], 9.15)
which is homogeneous of degree unity in dep. We take { =0, when I, = 0. We define Z by
Z =(Lp). (9.16)

With this new definition of £, we assume a constitutive equation of the form (9.8), with (9.9).
Then, it is easily shown, in a manner analogous to that employed in Section 6 in discussing the
first theory, that measurements of stress, in experiments involving simple extensions and shears
carried out in disjoint time intervals, cannot be used to establish the validity of any particular
form of dependence of { on I, and .

Also, it can be shown, paralleling the discussion in Section 8, that, in general, for a
constitutive equation of the form given in (9.8) and (9.9), paths in plastic strain space which are
arbitrarily close together, may have very different values for { corresponding to the same
values of plastic strain and accordingly may yield very different values for the stress at the
same value of the strain. However, this fact does not constitute an objection to the theory,
since plastic strain histories which are close together, in the sense of the supremum norm, may
be associated with very different histories of the total strain.
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APPENDIX. “THERMODYNAMIC" JUSTIFICATION OF THE FIRST THEORY

In this section, we outline the essential features of the argument of Valanis in arriving at the constitutive equations of
his first theory of plasticity, in the particular case when the strains are small and the deformations arc carried out
isothermally. The argument given here is not strictly that given by Valanis{!]. His theory involves rather elaborate
thermodynamic considerations of questionable validity, which are, in any case, unnecessary for attaining his final
constitutive equations. We have found it possible to replace these arguments by far simpler ones which involve only some
of the assumptions used, either explicitly or implicitly, by Valanis and none that are not used by him.

Valanis defines, for a rate-independent material, an intrinsic time scale z which is a monotonically non-decreasing
function of real time 7 and is a fuactional of the strain-history up to time £. He considers that the form of this functional
dependence may depend on the material considered. For an isotropic material undergoing small deformations, he expresses
z as a monotonically increasing function of another (positive) variable {, thus -

2= f({). (A.1)
{ is, in turn, defined by an expression of the form
(d0) = k(tr de)’ + katr(de ), (A2)

where k, and k, are posilive material constants, with { = 0 initially. We note that the expression for d{ is the most general
quadratic form in de, with constant coefficients, which is invariant under an arbitrary orthogonal transformation. Valanis
then assumes that the stress o measured at time ¢ is an isotropic tensor functional of the strain regarded as a function of 2.

These assumptions ensure that if we consider the strain in the material to execute a specified path in nine-dimensional
strain space, the stress corresponding to a particular point on this path is independent of the rate at which the path is
executed. The same objective can be achieved by choosing z to be any isotropic scalar functional of the strain history
which increases monotonically with time. For example, the strain path length /, defined by (5.2), provides such a functional.
It is emphasized that the particular choice which is made neither increases nor decreases the generality of the theory
developed. It merely changes the form of the functional expression for ¢ appropriate to a given material.

The particular definition (A.2) of { adopted by Valanis is justified only by the statement [1] *'it appears logical to define
{ by...". The particular dependence of z on { which he assumes is avowedly justified only by alleged agreement of the
predictions of the theory with experiment.

From this point onwards, the argument of Valanis can be very much simplified without losing his final result. We shall
present this simpler argument here and avoid the questionable thermodynamic argument given by him in [1].

We assume, with Valanis, that the state of the material at any instant can be characterized by the instantaneous values
of the strain € and of » internal variables ¢'*(a=1,...,»), which are symmetric second-order tensors It is further
assumed, still following Valanis, that the rate of change of ¢'*’, measured with respect to z, is determined by the
instantaneous values of ¢ and of g8 =1,..., ), thus

{a)
d_;_z_ = fle)(g, qlﬁb)' (A3)

This is the evolution equation for ¢'"'. (We will see later that this assumption is unacceptabie, but for the moment will
pretend that this is not the case.)

The function f**’ must be an isotropic symmetric tensor function of ¢ and ¢'*", since the material is isotropic. We shall
suppose that it depends sufficiently smoothly on ¢ and ¢*#' and that these are sufficiently small, so that we can neglect
terms of higher degree than the first in them. We also make the assumption that £ = ¢’ = 0 when z =0. We accordingly
write

() I "
si'dqz_ =A,e+ 2 Augg"™ +(B,tre + Y, Bogtrq®)8, (A4)
g1 B=i
where the A's and B's sre constants and & is the Kronecker delta. From (A.4) we readily obtain
dierg™) ' ®)
e =(A,+3B.)tre+ ), (A.s+3Bp)trg'?,
A=l
d @) &
—gil = A,e,,+ﬁ2_' At (AS)
where the deviatoric strain and deviatoric internal variables are given by
eD=z—%(rre)&.q‘[,"=q“"—:-i(trq“")5. (A.6)
Equations (A.S), can be solved for ¢/3’ to yield a solution of the form

o

=3 A, f e (27 (A7)
8=
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where the A's are constants determined by the equations

3 A=A (A8)
in which p,(x = 1,..., ») are the solutions for p of the equation

det|pb,s+ Aus | =0, (A9)

where 5,4 is the v-dimensional Kronecker delta.
In a similar manner eqns (A.5); can be solved for trq'’ to yield

m,""=§‘. B f et ez (A.10)
-l [}
where the B’s are constants given by
3 BunlAeg+ 3Bup A0 =0, (@=L, )
=i

;‘, B.o=A.+3B,, A1)
=i

in which A_(u = 1,..., ») are the solutions for A of the equation

det|AS,p+ Age+3B,51=0. (A.12)

In deriving (A.7) and (A.10), we make the assumption that ¢'*’=0 when 2 =0,
With the assumption that €(z) =0 when z =0, we can require (A.7) and (A.10) as

@) = Y -—] .._.' fz ~pglz-2"} ,}
95 ;; A.p{p, eolz) = | €7 depla) g,
w=3 g 1 _ifl ~Aplz-2") , }
trq BE.,B"’{A,, tre(z) % Jo e~ N ditre(2)] 1. (A.13)

We now assume that the Cauchy stress o at “time”™ 2 is an isotropic linear function of £(2) and ¢""Na =1,...,»), The
deviatoric stress op is defined by

op=0 —%(trv)& (A.14)

Then, we may express op and {ro in the forms

Op= GCD + 52| Ggqg'-

tro=H(re)+ 2": Hg(tr g%, (A.15)
A=

where the G's and H’s are constants. Using (A.13), we obtain from (A.15), expressions for op and tr & of the forms

op=12 J; ' ulz - 2'Mep(2),

tro = j x(z - 2'Mltre), (A.16)
0
where the functions u(z - 2) and x(2 — 2') have the forms
u(Z _z:),___ ot 2 s e-p,(z-:‘)'
=

k(z—2)= “°+;. g &M, (A7)

and up, kg (B8=0,..., v) are constants.

It is evident that the passage from eqns (A.13) and (A.15) to constitutive eqns (A.16) is valid, whatever the
physical interpretation of z, provided that it is an isotropic variable in terms of which the histories of the strain and of the
internal variables can be parametrized. The choice of z made by Valanis is

2= Q). f(£)=%ln(l +B0). A8

where B is a positive constant and { is defined by (A.2).
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If we accept a relation of the form (A.18), and use (A.3), we obtain

dT?{‘__ = (O, q«m)‘ (A.19)

This implies that the infinitesimal changes in the internal variables due to an infinitesimal change in the strain depends not
only on the instantaneous values of the internal variables and the strain, but also, through ¢, on the whole past history of
the strain. We remark that usually, when internal variables are introduced, along with the current strain, as independent
variables in a constitutive equation, it is in order to provide a full descritption of the current state in terms of the current
values of the independent variables of the theory. If the internal variables and the strain provide a complete description of
the state, then the infinitesimal change in the internal variables due to a specified infinitesimal change in the strain should
depend only on their current values.

Another peculiarity of the relation (A.19) and, indeed, of (A.3) is that different infinitesimal changes of strain which
result, from (A.2), in the same values of d{, lead to the same infinitesimal changes in the internal variables ¢'*. This
peculiarity can be avoided by including the “rate” of change of strain, de/dz, as an independent variable in (A.3). Then, the
relations (A.5) are replaced by

ta) i .
) - (A, + 3B, +(C,+ 300D s 354 438, 10mg,
=1

7.1 2
98 4 i 8243 ALe, (A20)
dz dz £

where the A’s, B's, C's and D's are constants.

From (A.16), proceeding as before, we again obtain expressions for o, and tre of the forms (A.16) where u(z - z') and
x(z — 2') still have the forms (A.17), and g and k(8 =1,..., v) are (different) constants. ps and Ag(B =1,..., ») are still
the solutions of eqns (A.9) and (A.12). We note, however, that in obtaining (A.17) from (A.20) we must either assume
that f() in (A.3) depends linearly on de/dz, or that it is a sufficiently smooth function of de/dz and that de/dz is
sufficiently small. The assumption that £ and g'® are small does not, of course, guarantee that de/dz is small. Indeed, de/d:
will not, in general, be small. For example, if the deformation considered is a simple shear, then the shear component of
deldz is (2k;)~'?, while the remaining components are zero.

Even when modified by the inclusion of de/dz as an independent variable, the evolution eqn (A.19) still implies that
infinitesimal changes in the internal variables resulting from a specified infinitesimal change of strain are independent of
whether the strain is purely elastic or plastic. It is difficult to see what physical identification of the internal variables could
lead to such a result.



